Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.606
Filtrar
1.
J Biol Chem ; 300(3): 105734, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336294

RESUMO

Numerous putative glycosyltransferases (GTs) have been identified using bioinformatic approaches. However, demonstrating the activity of these GTs remains a challenge. Here, we describe the development of a rapid in vitro GT-array screening platform for activity of GTs. GT-arrays are generated by cell-free in vitro protein synthesis and binding using microplates precoated with a N-terminal Halo- or a C-terminal GST-tagged GT-encoding plasmid DNA and a capture antibody. These arrays are then used for screening of transferase activities and the reactions are monitored by a luminescence GLO assay. The products formed by these reactions can be analyzed directly from the microplates by mass spectrometry. Using this platform, a total of 280 assays were performed to screen 22 putative fucosyltransferases (FUTs) from family GT37 (seven from Arabidopsis and 15 from rice) for activity toward five acceptors: non-fucosylated tamarind xyloglucan (TXyG), arabinotriose (Ara3), non-fucosylated rhamnogalacturonan I (RG-I), and RG-II from the mur1-1 Arabidopsis mutant, and the celery RG-II monomer lacking Arap and MeFuc of chain B and l-Gal of chain A. Our screen showed that AtFUT2, AtFUT5, and AtFUT10 have activity toward RG-I, while AtFUT8 was active on RG-II. Five rice OsFUTs have XyG-FUT activity and four rice OsFUTs have activity toward Ara3. None of the putative OsFUTs were active on the RG-I and RG-II. However, promiscuity toward acceptors was observed for several FUTs. These findings extend our knowledge of cell wall polysaccharide fucosylation in plants. We believe that in vitro GT-array platform provides a valuable tool for cell wall biochemistry and other research fields.


Assuntos
Ensaios Enzimáticos , Fucosiltransferases , Glicosiltransferases , Proteínas de Plantas , Apium/enzimologia , Apium/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/química , Parede Celular/enzimologia , Parede Celular/metabolismo , Ensaios Enzimáticos/instrumentação , Ensaios Enzimáticos/métodos , Fucosiltransferases/análise , Fucosiltransferases/classificação , Fucosiltransferases/metabolismo , Glicosiltransferases/análise , Glicosiltransferases/metabolismo , Espectrometria de Massas , Oryza/enzimologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
2.
Genome Biol ; 24(1): 198, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649077

RESUMO

BACKGROUND: The Fe (II)- and α-ketoglutarate-dependent AlkB family dioxygenases are implicated in nucleotide demethylation. AlkB homolog1 (ALKBH1) is shown to demethylate DNA adenine methylation (6mA) preferentially from single-stranded or unpaired DNA, while its demethylase activity and function in the chromatin context are unclear. RESULTS: Here, we find that loss-of-function of the rice ALKBH1 gene leads to increased 6mA in the R-loop regions of the genome but has a limited effect on the overall 6mA level. However, in the context of mixed tissues, rather than on individual loci, the ALKBH1 mutation or overexpression mainly affects the expression of genes with a specific combination of chromatin modifications in the body region marked with H3K4me3 and H3K27me3 but depleted of DNA CG methylation. In the similar context of mixed tissues, further analysis reveals that the ALKBH1 protein preferentially binds to genes marked by the chromatin signature and has a function to maintain a high H3K4me3/H3K27me3 ratio by impairing the binding of Polycomb repressive complex 2 (PRC2) to the targets, which is required for both the basal and stress-induced expression of the genes. CONCLUSION: Our findings unravel a function of ALKBH1 to control the balance between the antagonistic histone methylations for gene activity and provide insight into the regulatory mechanism of PRC2-mediated H3K27me3 deposition within the gene body region.


Assuntos
Oryza , Ligação Proteica , Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/enzimologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Mutação , Histonas/metabolismo , Cromatina
3.
Nature ; 618(7967): 1017-1023, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316672

RESUMO

The discovery and application of genome editing introduced a new era of plant breeding by giving researchers efficient tools for the precise engineering of crop genomes1. Here we demonstrate the power of genome editing for engineering broad-spectrum disease resistance in rice (Oryza sativa). We first isolated a lesion mimic mutant (LMM) from a mutagenized rice population. We then demonstrated that a 29-base-pair deletion in a gene we named RESISTANCE TO BLAST1 (RBL1) caused broad-spectrum disease resistance and showed that this mutation caused an approximately 20-fold reduction in yield. RBL1 encodes a cytidine diphosphate diacylglycerol synthase that is required for phospholipid biosynthesis2. Mutation of RBL1 results in reduced levels of phosphatidylinositol and its derivative phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In rice, PtdIns(4,5)P2 is enriched in cellular structures that are specifically associated with effector secretion and fungal infection, suggesting that it has a role as a disease-susceptibility factor3. By using targeted genome editing, we obtained an allele of RBL1, named RBL1Δ12, which confers broad-spectrum disease resistance but does not decrease yield in a model rice variety, as assessed in small-scale field trials. Our study has demonstrated the benefits of editing an LMM gene, a strategy relevant to diverse LMM genes and crops.


Assuntos
Diacilglicerol Colinofosfotransferase , Resistência à Doença , Edição de Genes , Oryza , Melhoramento Vegetal , Doenças das Plantas , Resistência à Doença/genética , Edição de Genes/métodos , Genoma de Planta/genética , Oryza/enzimologia , Oryza/genética , Oryza/microbiologia , Fosfatidilinositóis/metabolismo , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Alelos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Diacilglicerol Colinofosfotransferase/genética , Diacilglicerol Colinofosfotransferase/metabolismo
4.
Nucleic Acids Res ; 51(4): 1823-1842, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36660855

RESUMO

Photosynthesis is the most temperature-sensitive process in the plant kingdom, but how the photosynthetic pathway responds during low-temperature exposure remains unclear. Herein, cold stress (4°C) induced widespread damage in the form DNA double-stranded breaks (DSBs) in the mesophyll cells of rice (Oryza sativa), subsequently causing a global inhibition of photosynthetic carbon metabolism (PCM) gene expression. Topoisomerase genes TOP6A3 and TOP6B were induced at 4°C and their encoded proteins formed a complex in the nucleus. TOP6A3 directly interacted with KU70 to inhibit its binding to cold-induced DSBs, which was facilitated by TOP6B, finally blocking the loading of LIG4, a component of the classic non-homologous end joining (c-NHEJ) pathway. The repression of c-NHEJ repair imposed by cold extended DSB damage signaling, thus prolonging the inhibition of photosynthesis in leaves. Furthermore, the TOP6 complex negatively regulated 13 crucial PCM genes by directly binding to their proximal promoter regions. Phenotypically, TOP6A3 overexpression exacerbated the γ-irradiation-triggered suppression of PCM genes and led to the hypersensitivity of photosynthesis parameters to cold stress, dependent on the DSB signal transducer ATM. Globally, the TOP6 complex acts as a signal integrator to control PCM gene expression and synchronize cold-induced photosynthesis inhibition, which modulates carbon assimilation rates immediately in response to changes in ambient temperature.


Assuntos
DNA Topoisomerases , Oryza , Fotossíntese , Carbono/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteínas de Ligação a DNA/genética , Células do Mesofilo/metabolismo , Oryza/enzimologia , Oryza/fisiologia , DNA Topoisomerases/fisiologia , Temperatura Baixa
5.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163610

RESUMO

Crop Wild Relatives (CWRs) form a comprehensive gene pool that can answer the queries related to plant domestication, speciation, and ecological adaptation. The genus 'Oryza' comprises about 27 species, of which two are cultivated, while the remaining are wild. Here, we have attempted to understand the conservation and diversification of the genes encoding Cystathionine ß-synthase (CBS) domain-containing proteins (CDCPs) in domesticated and CWRs of rice. Few members of CDCPs were previously identified to be stress-responsive and associated with multiple stress tolerance in rice. Through genome-wide analysis of eleven rice genomes, we identified a total of 36 genes encoding CDCPs in O. longistaminata, 38 in O. glaberrima, 39 each in O. rufipogon, O. glumaepatula, O. brachyantha, O. punctata, and O. sativa subsp. japonica, 40 each in O. barthii and O. meridionalis, 41 in O. nivara, and 42 in O. sativa subsp. indica. Gene duplication analysis as well as non-synonymous and synonymous substitutions in the duplicated gene pairs indicated that this family is shaped majorly by the negative or purifying selection pressure through the long-term evolution process. We identified the presence of two additional hetero-domains, namely TerCH and CoatomerE (specifically in O. sativa subsp. indica), which were not reported previously in plant CDCPs. The in silico expression analysis revealed some of the members to be responsive to various abiotic stresses. Furthermore, the qRT-PCR based analysis identified some members to be highly inducive specifically in salt-tolerant genotype in response to salinity. The cis-regulatory element analysis predicted the presence of numerous stress as well as a few phytohormone-responsive elements in their promoter region. The data presented in this study would be helpful in the characterization of these CDCPs from rice, particularly in relation to abiotic stress tolerance.


Assuntos
Cistationina beta-Sintase/genética , Evolução Molecular , Oryza/enzimologia , Estresse Fisiológico , Oryza/genética , Oryza/fisiologia , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Salinidade
6.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216463

RESUMO

Grain weight, a crucial trait that determines the grain yield in rice, is influenced by grain size. Although a series of regulators that control grain size have been identified in rice, the mechanisms underlying grain development are not yet well understood. In this study, we identified OsPUB43, a U-box E3 ubiquitin ligase, as an important negative regulator determining the gain size and grain weight in rice. Phenotypes of large grain are observed in ospub43 mutants, whereas overexpression of OsPUB43 results in short grains. Scanning electron microscopy analysis reveals that OsPUB43 modulates the grain size mainly by inhibiting cell proliferation in the spikelet hull. The OsPUB43 protein is localized in the cytoplasm and nucleus. The ospub43 mutants display high sensitivity to exogenous BR, while OsPUB43-OE lines are hyposensitive to BR. Furthermore, the transient transcriptional activity assay shows that OsBZR1 can activate the expression of OsPUB43. Collectively, our results indicate that OsPUB43 negatively controls the gain size by modulating the expression of BR-responsive genes as well as MADS-box genes that are required for lemma/palea specification, suggesting that OsPUB43 has a potential valuable application in the enlargement of grain size in rice.


Assuntos
Proliferação de Células , Grão Comestível/anatomia & histologia , Mutação , Oryza/enzimologia , Ubiquitina-Proteína Ligases/genética , Sistemas CRISPR-Cas , Grão Comestível/fisiologia , Edição de Genes , Oryza/anatomia & histologia , Oryza/metabolismo , Oryza/fisiologia , Proteínas de Plantas/genética
7.
Plant Mol Biol ; 108(4-5): 481-496, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35099666

RESUMO

KEY MESSAGE: BEIIb plays a specific role in determining the structure of amylopectin in rice endosperm, whereas BEIIa plays the similar role in the culm where BEIIb is absent. Cereals have three types of starch branching enzymes (BEs), BEI, BEIIa, and BEIIb. It is widely known that BEIIb is specifically expressed in the endosperm and plays a distinct role in the structure of amylopectin because in its absence the amylopectin type changes to the amylose-extender-type (ae-type) or B-type from the wild-type or A-type and this causes the starch crystalline allomorph to the B-type from the wild-type A-type. This study aimed to clarify the role of BEIIa in the culm where BEIIb is not expressed, by using a be2a mutant in comparison with results with be2b and be1 mutants. The results showed that the amylopectin structure exhibited the B-type in the be2a culm compared with the A-type in the wild-type culm. The starch granules from the be2a culm also showed the B-type like allomorph when examined by X-ray diffraction analysis and optical sum frequency generation spectroscopy. Both amylopectin chain-length profile and starch crystalline properties were found to be the A-type at the very early stage of endosperm development at 4-6 days after pollination (DAP) even in the be2b mutant. All these results support a view that in the culm as well as in the endosperm at 4-6 DAP, BEIIa can play the role of BEIIb which has been well documented in maturing endosperm. The possible mechanism as to how BEIIa can play its role is discussed.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilopectina/química , Amilopectina/metabolismo , Endosperma/metabolismo , Oryza/enzimologia , Amido/metabolismo , Configuração de Carboidratos , Eletroforese em Gel de Poliacrilamida , Imageamento por Ressonância Magnética , Mutação , Oryza/metabolismo , Conformação Proteica , Análise Espectral , Amido/química , Difração de Raios X
8.
Sci Rep ; 12(1): 1314, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079055

RESUMO

Western Jilin Province is one of the world's three major saline-alkali land distribution areas, and is also an important area of global climate change and carbon cycle research. Rhizosphere soil microorganisms and enzymes are the most active components in soil, which are closely related to soil carbon cycle and can reflect soil organic carbon (SOC) dynamics sensitively. Soil inorganic carbon (SIC) is the main existing form of soil carbon pool in arid saline-alkali land, and its quantity distribution affects the pattern of soil carbon accumulation and storage. Previous studies mostly focus on SOC, and pay little attention to SIC. Illumina Miseq high-throughput sequencing technology was used to reveal the changes of community structure in three maize fields (M1, M2 and M3) and three rice fields (R1, R2 and R3), which were affected by different levels of salinization during soil development. It is a new research topic of soil carbon cycle in saline-alkali soil region to investigate the effects of soil microorganisms and soil enzymes on the transformation of SOC and SIC in the rhizosphere. The results showed that the root-soil-microorganism interaction was changed by saline-alkali stress. The activities of catalase, invertase, amylase and ß-glucosidase decreased with increasing salinity. At the phylum level, most bacterial abundance decreases with increasing salinity. However, the relative abundance of Proteobacteria and Firmicutes in maize field and Firmicutes, Proteobacteria and Nitrospirae in rice field increased sharply under saline-alkali stress. The results of redundancy analysis showed that the differences of rhizosphere soil between the three maize and three rice fields were mainly affected by ESP, pH and soil salt content. In saline-alkali soil region, ß-glucosidase activity and amylase were significantly positively correlated with SOC content in maize fields, while catalase and ß-glucosidase were significantly positively correlated with SOC content in rice fields. Actinobacteria, Bacteroidetes and Verrucomicrobia had significant positive effects on SOC content of maize and rice fields. Proteobacteria, Gemmatimonadetes and Nitrospirae were positively correlated with SIC content. These enzymes and microorganisms are beneficial to soil carbon sequestration in saline-alkali soils.


Assuntos
Álcalis/análise , Carbono/análise , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/genética , Rizosfera , Salinidade , Microbiologia do Solo , Solo/química , Produtos Agrícolas/enzimologia , Produtos Agrícolas/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Concentração de Íons de Hidrogênio , Oryza/enzimologia , Oryza/microbiologia , Zea mays/enzimologia , Zea mays/microbiologia
9.
Plant Mol Biol ; 108(4-5): 497-512, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35083581

RESUMO

KEY MESSAGE: Mutation of the BEIIb gene in an isa1 mutant background mitigates the negative effect of the ISA1 mutation on grain filling, and facilitates recovery of amyloplast formation in rice endosperm. In this study, the effect of branching enzyme IIb and isoamylase 1 deficiency on starch properties was demonstrated using high resistant starch rice lines, Chikushi-kona 85 and EM129. Both lines harbored a mutation in the BEIIb and ISA1 genes and showed no BEIIb and ISA1 activity, implying that both lines are beIIb isa1 double mutants. The amylopectin long chain and apparent amylose content of both mutant lines were higher than those of the wild-type. While both mutants contained loosely packed, round starch grains, a trait specific to beIIb mutants, they also showed collapsed starch grains at the center of the endosperm, a property specific to isa1 mutants. Furthermore, beIIb isa1 double mutant F2 lines derived from a cross between Chikushi-kona 85 and Nishihomare (wild-type cultivar) showed significantly heavier seed weight than the beIIb and isa1 single mutant lines. These results suggest that co-occurrence of beIIb and isa1 mutant alleles in a single genetic background mitigates the negative effect of the isa1 allele on grain filling, and contributes to recovery of the amyloplast formation defect in the isa1 single mutant.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Isoamilase/genética , Oryza/genética , Plastídeos/fisiologia , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Grão Comestível , Genótipo , Isoamilase/metabolismo , Mutação , Oryza/enzimologia , Oryza/metabolismo
10.
Commun Biol ; 5(1): 67, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046494

RESUMO

Proper anther and pollen development are important for plant reproduction. The plant hormone gibberellin is important for anther development in rice, but its gametophytic functions remain largely unknown. Here, we report the functional and evolutionary analyses of rice gibberellin 3-oxidase 1 (OsGA3ox1), a gibberellin synthetic enzyme specifically expressed in the late developmental stages of anthers. Enzymatic and X-ray crystallography analyses reveal that OsGA3ox1 has a higher GA7 synthesis ratio than OsGA3ox2. In addition, we generate an osga3ox1 knockout mutant by genome editing and demonstrate the bioactive gibberellic acid synthesis by the OsGA3ox1 action during starch accumulation in pollen via invertase regulation. Furthermore, we analyze the evolution of Oryza GA3ox1s and reveal that their enzyme activity and gene expression have evolved in a way that is characteristic of the Oryza genus and contribute to their male reproduction ability.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/genética , Oryza/genética , Proteínas de Plantas/genética , Genes de Plantas , Oxigenases de Função Mista/metabolismo , Oryza/enzimologia , Proteínas de Plantas/metabolismo
11.
J Plant Physiol ; 268: 153583, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34871988

RESUMO

Drought and salt stresses are two major abiotic stress factors that hamper crop growth and productivity. Three rice cultivars with different sensitivity and tolerance towards abiotic stress were used in the current study. While cultivar Aiswarya is salt- and drought-sensitive, cultivar Vyttila is salt-tolerant and cultivar Vaisakh is drought-tolerant. We compared the physiological and biochemical responses of these rice cultivars under salt and drought stress conditions after restricting their cytochrome oxidase (COX) and alternative oxidase (AOX) pathways using antimycin A and salicylhydroxamic acid treatment. Further, changes in their expression of AOX genes and corresponding protein levels were compared and analysed. The sensitive and tolerant rice cultivars subjected to drought and salt stress showed differential responses in physiological and biochemical traits. Whereas Aiswarya showed clear phenotypic differences, such as stunted growth, leaf curling, and loss of greening in leaf tissues, with increase in salt content and progressive drought stress, Vyttila and Vaisakh showed no remarkable changes. Moreover, the drought-tolerant cultivar rehydrated after 10 days of drought exposure, whereas the sensitive variety did not show any rehydration of leaf tissue. The leaves of the tolerant cultivars showed lower reactive oxygen species (ROS) production than that of the sensitive plants under drought and salt stress conditions because of the activation of a stronger antioxidant defence. Although, the restriction of COX and AOX pathways increased the susceptibility of sensitive cultivars, it affected the tolerant varieties moderately. Higher photosynthetic rates, an efficient antioxidant system comprising higher superoxide dismutase, ascorbate peroxidase, and catalase activity along with higher AOX1a gene expression levels during drought and salt stress were observed in tolerant cultivars. The results suggest that an efficient antioxidant system and increased transcription of the AOX1a gene along with higher AOX protein levels are important for tolerant rice cultivars to maintain higher photosynthesis rates, lower ROS, and stress tolerance. Restriction of COX and AOX pathways impact the photosynthesis, ROS, and antioxidant enzymes in both sensitive and tolerant cultivars. The restriction of COX and AOX pathways have a stronger impact on gas exchange and fluorescence parameters of the sensitive cultivar than on that of the tolerant cultivars owing to the higher photosynthetic rates in tolerant cultivars.


Assuntos
Oryza , Fotossíntese , Antioxidantes/metabolismo , Secas , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Oryza/enzimologia , Oryza/fisiologia , Estresse Oxidativo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salinidade
12.
Plant Mol Biol ; 108(4-5): 399-412, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34750721

RESUMO

KEY MESSAGE: Down-regulation of starch branching enzymes alters fine structure and starch properties, especially the B-type crystalline pattern and extremely high amylose content identified in the BEIIb-deficiency mutant in the indica rice. The relative importance of the starch branching enzymes in determining the molecular fine structure and starch functional properties were uncovered in this study. An indica rice, Guangluai 4 with high amylose content (AC) and high gelatinization temperature (GT) was used to generate the clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein-9 (Cas9) knockout lines. Five mutant lines were identified including be1-1, be1-2, be2a-1, be2a-2 and be2b-1, and analysis of western blot showed the CRISPR/Cas9 system was successful in inducing mutations in the targeted genes. AC of be2b-1 (34.1%) was greater than that of wild type (WT) (27.4%) and other mutants. Mutations of either BEI or BEIIa did not alter the starch crystallite pattern (A-type). The BEIIb deficiency caused an opaque endosperm phenotype, changed the crystallite pattern from A- to B-type, and dramatically increased the degree of ordered structure, the relative proportion of amylose chains and intermediate to long amylopectin chains, average chain length of amylopectin molecules as well as GT. The BEIIa deficiency had no effect on the proportion of amylose chains, the length of amylopectin intermediate-long chains, conclusion temperature and enthalpy of gelatinization. Down-regulation of BEI increased the proportion of shortest amylopectin chains (fa) but decreased the proportion of long amylopectin chains (fb2 and fb3), leading to a lower GT. It is concluded that the relative importance in determining starch fine structures and functionality was in the order of BEIIb > BEI > BEIIa. Our results provide new information for utilizations of BE-deficient mutants in rice quality breeding.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Oryza/enzimologia , Amido/química , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Amilopectina/química , Configuração de Carboidratos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cristalografia por Raios X , Edição de Genes , Técnicas de Inativação de Genes , Isoenzimas/química , Isoenzimas/metabolismo , Oryza/química , Oryza/genética , Plantas Geneticamente Modificadas , Amido/metabolismo , Transcriptoma
13.
J Biol Chem ; 298(1): 101395, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762912

RESUMO

Branching enzymes (BEs) are essential in the biosynthesis of starch and glycogen and play critical roles in determining the fine structure of these polymers. The substrates of these BEs are long carbohydrate chains that interact with these enzymes via multiple binding sites on the enzyme's surface. By controlling the branched-chain length distribution, BEs can mediate the physiological properties of starch and glycogen moieties; however, the mechanism and structural determinants of this specificity remain mysterious. In this study, we identify a large dodecaose binding surface on rice BE I (BEI) that reaches from the outside of the active site to the active site of the enzyme. Mutagenesis activity assays confirm the importance of this binding site in enzyme catalysis, from which we conclude that it is likely the acceptor chain binding site. Comparison of the structures of BE from Cyanothece and BE1 from rice allowed us to model the location of the donor-binding site. We also identified two loops that likely interact with the donor chain and whose sequences diverge between plant BE1, which tends to transfer longer chains, and BEIIb, which transfers exclusively much shorter chains. When the sequences of these loops were swapped with the BEIIb sequence, rice BE1 also became a short-chain transferring enzyme, demonstrating the key role these loops play in specificity. Taken together, these results provide a more complete picture of the structure, selectivity, and activity of BEs.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Cyanothece , Oryza , Enzima Ramificadora de 1,4-alfa-Glucana/química , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Glicogênio , Oryza/enzimologia , Oryza/metabolismo , Amido/biossíntese , Relação Estrutura-Atividade
14.
Plant Mol Biol ; 108(4-5): 379-398, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34671919

RESUMO

KEY MESSAGE: High levels of two major starch synthases, SSIIa and GBSSI, in ss3a ss4b double mutant rice alter the starch structure but fail to recover the polygonal starch granule morphology. The endosperm starch granule is polygonal in wild-type rice but spherical in double mutant japonica rice lacking genes encoding two of the five major Starch synthase (SS) isozymes expressed in endosperm, SSIIIa and SSIVb. Japonica rice naturally has low levels of SSIIa and Granule-bound SSI (GBSSI). Therefore, introduction of active SSIIa allele and/or high-expressing GBSSI allele from indica rice into the japonica rice mutant lacking SS isozymes can help elucidate the compensatory roles of SS isozymes in starch biosynthesis. In this study, we crossed the ss3a ss4a double mutant japonica rice with the indica rice to generate three new rice lines with high and/or low SSIIa and GBSSI levels, and examined their starch structure, physicochemical properties, and levels of other starch biosynthetic enzymes. Lines with high SSIIa levels showed more SSI and SSIIa bound to starch granule, reduced levels of short amylopectin chains (7 ≤ DP ≤ 12), increased levels of amylopectin chains with DP > 13, and consequently higher gelatinization temperature. Lines with high GBSSI levels showed an increase in amylose content. The ADP-glucose content of the crude extract was high in lines with low or high SSIIa and low GBSSI levels, but was low in lines with high GBSSI. Addition of high SSIIa and GBSSI altered the starch structure and physicochemical properties but did not affect the starch granule morphology, confirming that SSIIIa and SSIVb are key enzymes affecting starch granule morphology in rice. The relationship among SS isozymes and its effect on the amount of substrate (ADP-glucose) is discussed.


Assuntos
Oryza/enzimologia , Sintase do Amido/metabolismo , Amido/metabolismo , Configuração de Carboidratos , Cruzamentos Genéticos , Pleiotropia Genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Oryza/química , Oryza/genética , Melhoramento Vegetal , Sementes/anatomia & histologia , Amido/química , Sintase do Amido/química , Sintase do Amido/genética
15.
Plant Mol Biol ; 108(4-5): 325-342, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34287741

RESUMO

KEY MESSAGE: Introduction of higher SSIIa activity to mild-type isa1 mutant by crossing results in restoration of crystallinity, starch granule structure, and production of plump seeds. Isoamylase 1 (ISA1) removes improper α-1, 6 glycosidic branches of amylopectin generated by starch branching enzymes and is essential for the formation of proper amylopectin structure. Rice isa1 (sug-1) mutants in japonica cultivar with less-active starch synthase IIa (SSIIa) and low granule-bound SSI (GBSSI) expression display wrinkled seed phenotype by accumulating water-soluble phytoglycogen instead of insoluble amylopectin. Expression of active SSIIa in transgenic rice produced with a severe-type isa1 mutant accumulated some insoluble glucan with weak B-type crystallinity at the periphery of seeds but their seeds remained wrinkled. To see whether introduction of high levels of SSIIa and/or GBSSI can restore the grain filling of the mild-type sug-1 mutant (EM653), new rice lines (SS2a gbss1L isa1, ss2aL GBSS1 isa1, and SS2a GBSS1 isa1) were generated by crossing japonica isa1 mutant (ss2aL gbss1L isa1) with wild type indica rice (SS2a GBSS1 ISA1). The results showed that SS2a gbss1L isa1 and SS2a GBSS1 isa1 lines generated chalky plump seeds accumulating insoluble amylopectin-like glucans with an increase in DP 13-35, while ss2aL GBSS1 isa1 generated wrinkly seeds and accumulated soluble glucans enriched with DP < 13. Scanning electron microscopic observation of cross-section of the seeds showed that SS2a gbss1L isa1 and SS2a GBSS1 isa1 produced wild type-like polygonal starch granules. These starches showed the A-type crystallinity comparable to the wild type, while the japonica isa1 mutant and the transgenic rice do not show any or little crystallinity, respectively. These results indicate that introduction of higher SSIIa activity can mostly complements the mild-type sug-1 phenotype.


Assuntos
Endosperma/enzimologia , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Sintase do Amido/metabolismo , Cruzamentos Genéticos , Regulação Viral da Expressão Gênica , Isoamilase/genética , Oryza/genética , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Sintase do Amido/genética , Açúcares/metabolismo
16.
Plant Mol Biol ; 108(4-5): 343-361, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34387795

RESUMO

KEY MESSAGE: FLO6 is involved in starch synthesis by interacting with SSIVb and GBSS in rice. Starch synthesized and stored in plastids including chloroplasts and amyloplasts plays a vital role in plant growth and provides the major energy for human diet. However, the molecular mechanisms by which regulate starch synthesis remain largely unknown. In this study, we identified and characterized a rice floury endosperm mutant M39, which exhibited defective starch granule formation in pericarp and endosperm, accompanied by the decreased starch content and amylose content. The abnormal starch accumulation in M39 pollen grains caused a significant decrease in plant fertility. Chloroplasts in M39 leaves contained no or only one large starch granule. Positional cloning combined with complementary experiment demonstrated that the mutant phenotypes were restored by the FLOURY ENDOSPERM6 (FLO6). FLO6 was generally expressed in various tissues, including leaf, anther and developing endosperm. FLO6 is a chloroplast and amyloplast-localized protein that is able to bind to starch by its carbohydrate-binding module 48 (CBM48) domain. Interestingly, we found that FLO6 interacted with starch synthase IVb (SSIVb) and granule-bound starch synthase (GBSSI and GBSSII). Together, our results suggested that FLO6 plays a critical role in starch synthesis through cooperating with several starch synthesis enzymes throughout plant growth and development.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sintase do Amido/metabolismo , Amido/biossíntese , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/enzimologia , Oryza/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Pólen/metabolismo , Ligação Proteica , Domínios Proteicos/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
17.
Theor Appl Genet ; 135(1): 173-183, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34608507

RESUMO

KEY MESSAGE: Pi65, a leucine-rich repeat receptor-like kinase (LRR-RLK) domain cloned from Oryza sativa japonica, is a novel rice blast disease resistance gene. Rice blast seriously threatens rice production worldwide. Utilizing the rice blast resistance gene to breed rice blast-resistant varieties is one of the best ways to control rice blast disease. Using a map-based cloning strategy, we cloned a novel rice blast resistance gene, Pi65, from the resistant variety GangYu129 (abbreviated GY129, Oryza sativa japonica). Overexpression of Pi65 in the susceptible variety LiaoXing1 (abbreviated LX1, Oryza sativa japonica) enhanced rice blast resistance, while knockout of Pi65 in GY129 resulted in susceptibility to rice blast disease. Pi65 encodes two transmembrane domains, with 15 LRR domains and one serine/threonine protein kinase catalytic domain, conferring resistance to isolates of Magnaporthe oryzae (abbreviated M. oryzae) collected from Northeast China. There were sixteen amino acid differences between the Pi65 resistance and susceptible alleles. Compared with the Pi65-resistant allele, the susceptible allele exhibited one LRR domain deletion. Pi65 was constitutively expressed in whole plants, and it could be induced in the early stage of M. oryzae infection. Transcriptome analysis revealed that numerous genes associated with disease resistance were specifically upregulated in GY129 24 h post inoculation (HPI); in contrast, photosynthesis and carbohydrate metabolism-related genes were particularly downregulated at 24 HPI, demonstrating that disease resistance-associated genes were activated in GY129 (carrying Pi65) after rice blast fungal infection and that cellular basal metabolism and energy metabolism were inhibited simultaneously. Our study provides genetic resources for improving rice blast resistance and enriches the study of rice blast resistance mechanisms.


Assuntos
Resistência à Doença/genética , Magnaporthe/fisiologia , Oryza/genética , Doenças das Plantas/imunologia , Proteínas Quinases/genética , Clonagem Molecular , Técnicas de Inativação de Genes , Genes de Plantas , Magnaporthe/imunologia , Oryza/enzimologia , Oryza/imunologia , Oryza/microbiologia , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Quinases/fisiologia , Transcriptoma
18.
BMC Plant Biol ; 21(1): 580, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34879830

RESUMO

BACKGROUND: Leaf senescence is a highly complex and meticulous regulatory process, and the disruption of any factor involved in leaf senescence might lead to premature or delayed leaf senescence and thus result in reduced or increased crop yields. Despite sincere efforts by scientists, there remain many unsolved problems related to the regulatory factors and molecular mechanisms of leaf senescence. RESULTS: This study successfully revealed that OsHXK1 was highly expressed in senescent leaves of rice. The upregulation of OsHXK1 led to premature senescence of rice leaves, a decreased level of chlorophyll, and damage to the chloroplast structure. The overexpression of OsHXK1 resulted in increases in glucose and ROS levels and produced programmed cell death (PCD) signals earlier at the booting stage. Further analysis showed that expression level of the respiratory burst oxidase homolog (RBOH) genes and OsGLO1 were increased in OsHXK1-overexpressing plants at the booting stage. CONCLUSIONS: Overall, the outcomes of this study suggested that OsHXK1 could act as a positive regulator of rice leaf senescence by mediating glucose accumulation and inducing an increase in ROS.


Assuntos
Genes de Plantas , Hexoquinase/genética , Oryza/enzimologia , Oryza/genética , Folhas de Planta/fisiologia , Senescência Vegetal/genética , Catálise , Perfilação da Expressão Gênica , Hexoquinase/fisiologia , Luz , Oryza/fisiologia , Espécies Reativas de Oxigênio/metabolismo
19.
BMC Plant Biol ; 21(1): 600, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922452

RESUMO

BACKGROUND: Overuse of chemical fertilizer highly influences grain filling rate and quality of rice grain. Biochar is well known for improving plant growth and grain yield under lower chemical fertilization. Therefore field trials were conducted in the early and late seasons of 2019 at Guangxi University, China to investigate the effects of combined biochar (B) and nitrogen (N) application on rice yield and yield components. There were a total of eight treatments: N1B0, 135 kg N ha- 1+ 0 t B ha- 1; N2B0,180 kg N ha- 1+ 0 t B ha- 1; N1B1,135 kg N ha- 1+ 10 t B ha- 1; N1B2,135kg N ha- 1+ 20 t B ha- 1; N1B3,135 kg N ha- 1+ 30 t B ha- 1; N2B1,180 kg N ha- 1+ 10 t B ha- 1; N2B2,180 kg N ha- 1+ 20 t B ha- 1; and N2B3,180 kg N ha- 1+ 30 t B ha- 1. RESULTS: Biochar application at 30 t ha- 1combined with low N application (135 kg ha- 1) increased the activity of starch-metabolizing enzymes (SMEs) during the early and late seasons compared with treatments without biochar. The grain yield, amylose concentration, and starch content of rice were increased in plots treated with 30 t B ha-1and low N. RT-qPCR analysis showed that biochar addition combined with N fertilizer application increased the expression of AGPS2b, SSS1, GBSS1, and GBSE11b, which increased the activity of SMEs during the grain-filling period. CONCLUSION: Our results suggest that the use of 20 to 30 t B ha- 1coupled with 135 kg N ha- 1 is optimal for improving the grain yield and quality of rice.


Assuntos
Carvão Vegetal/farmacologia , Fertilizantes , Nitrogênio/farmacologia , Oryza/efeitos dos fármacos , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Agricultura , Amilose/metabolismo , China , Ativação Enzimática , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Oryza/enzimologia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo
20.
GM Crops Food ; 12(1): 435-448, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34935587

RESUMO

The ultraviolet B (UVB) sensitivity of rice cultivated in Asia and Africa varies greatly, with African rice cultivars (Oryza glaberrima Steud. and O. barthii A. Chev.) being more sensitive to UVB because of their low cyclobutane pyrimidine dimer (CPD) photolyase activity, which is a CPD repair enzyme, relative to Asian rice cultivars (O. sativa L.). Hence, the production of UVB-resistant African rice with augmented CPD photolyase activity is of great importance, although difficulty in transforming the African rice cultivars to this end has been reported. Here, we successfully produced overexpressing transgenic African rice with higher CPD photolyase activity by modifying media conditions for callus induction and regeneration using the parental line (PL), UVB-sensitive African rice TOG12380 (O. glaberrima). The overexpressing transgenic African rice carried a single copy of the CPD photolyase enzyme, with a 4.4-fold higher level of CPD photolyase transcripts and 2.6-fold higher activity than its PL counterpart. When the plants were grown for 21 days in a growth chamber under visible radiation or with supplementary various UVB radiation, the overexpressing transgenic plants have a significantly increased UVB resistance index compared to PL plants. These results strongly suggest that CPD photolyase remains an essential factor for tolerating UVB radiation stress in African rice. As a result, African rice cultivars with overexpressed CPD photolyase may survive better in tropical areas more prone to UVB radiation stress, including Africa. Collectively, our results provide strong evidence that CPD photolyase is a useful biotechnological tool for reducing UVB-induced growth inhibition in African rice crops of O. glaberrima.


Assuntos
Desoxirribodipirimidina Fotoliase , Oryza , Reparo do DNA , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Oryza/enzimologia , Oryza/genética , Oryza/efeitos da radiação , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/efeitos da radiação , Dímeros de Pirimidina , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...